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An Unconditionally Stable Finite Element
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Abstract—This paper presents an implicit finite element time-
domain (FETD) solution of the time-dependent vector wave equa-
tion. The time-dependent formulation employs a time-integration

method based on the Newmark-Beta method. A stability analysis

is presented demonstrating that this leads to an unconditionally
stable solution of the time-dependent vector wave equation. The

advantage of this formulation is that the time step is no longer

governed by the spatial discretization of the mesh, but rather by
the spectral content of the time-dependent signal. A nnmerical
example of a three-dimensional cavity resonator is presented

studying the effects of the Newmark-beta parameters on the
solution error. Optimal choices of parameters are derived based
on this example.

I. INTRODUCTION

v OLUME DISCRETIZATION techniques have been used

extensively for rigorous time-domain analyses of mi-

crowave circuits and resonators. The finite-difference time-

domain (FDTD) method, an explicit method, has proven to

be a highly efficient technique [1]. Finite element methods

have also been implemented using both implicit [2]–[5], and

explicit methods [6]. For an implicit method to be competitive

with an explicit method, the number of time iterations required

to converge to a final solution must be significantly less,

since each time iteration requires a solution of a linear system

of equations, Unfortunately, the implicit finite element time-

domain (FETD) methods presented in [2]–[5] are conditionally

stable, and in fact, stability requires time steps that can be

smaller than those required by explicit FDTD methods [7].

In this letter, a FETD algorithm based on the Newmark Beta

method [8], [9] is presented. It is shown that the algorithm is

unconditionally stable for the three-dimensional vector FETD

problem. Some numerical examples based on a cavity res-

onator problem are presented to demonstrate the efficiency and

accuracy of the method and the optimal choice of parameters.

II. THE FINITE ELEMENT FORMULATION

Time-dependent electromagnetic fields radiated by an elec-

tric current density ~ are defined in a finite volume Q bound

by the surface Xl. The electric fields must satisfy the time-

dependent inhomogeneous wave equation

L3E E, a2J5 (%7’
vx$vx@+Poffz+T—

= –Lboz (1)
co tw
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where co is the speed of light in free space, a is the con-

ductivity, and s. and pr are the relative permittivity and

permeabilities. The problem is simplified by defining ~Q to be

an electric (PEC) or magnetic (PMC) wall. The inner product

of (1) with a testing function ? is performed, and applying

Green’s first vector identity leads to the weak form

The vector fields are expanded using one-form Whitney edge

elements P?; weighted by constant coefficients ej that are

continuous functions of time. Taking the tirst variation of (2)

and evaluating it at the stationary point leads to the second-

order ordinary differential equation

where [Tc], [Ta] and [S] are time-independent matrices. and

Based on the Newmark-Beta

approximated as

(4)

formulation [8], [9], (3) is

[Tz] =!=
(coAt)z

(e~+l – a~n + ~~-1)

+ [2!’a]*(en+l – er’-l)

+ [S](/3en+1 + (1– 2/3)en + &-l) = O (5)

1s the discrete-time representation of e, namely,where, en

en = e(nllt) and /~ is a constant. This leads to the implicit

update scheme

e ‘+1 = [[T.]+ ;qocoAt[Ta] + b(coA~)’[s]]-l

{[2[TC] - (1 - 2/3)( coAt)2[S]]en

- [[Tc] - ~nocoAt[T~] + $(coAt)2[S]]e”-1

- (coAt)2[@fn+’ + (1 - 2i7)fn+’ + /?fn-l]}. (6)
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III. STABILITY ANALYSIS

Equation (6) is expressed in reduced notation as the second-

order difference equation

e ‘+1 = 2[A]-l[B]en – [A]-l[C’]en-l (7)

whpre it is assumed ~n = O. This can be reduced to a
first-order equation by introducing the vectors

‘n+’=R’] ‘n= [$]
(8)

and then expressing (7) as

Y
[ 1

‘+1 = [M]y”-l; [M] = 2[A~;; [B] –[AI;’ [cl .

(9)

Stability of the first-order equation requires p( [M]) <1, where

P( [~]) is the spectral radius of M.
Define (Al, ZI ) to be an eigensolution of [A]’1 [B], and

(A2, X2) to be an eigensolution to [A]’1 [C]. It can be shown

that [A] – 1 [B] and [A] – 1[c’] are simultaneously diagonalizable

[10]. This implies that Z2 = Cxl, where c is a constant.

The eigenspectrum of [Af] is then found from the eigenvalue

problem

.7. .

(lo)

Let [P] be the eigenvector matrix of [A] – 1 [B] and

[A]-l[C]. Then, [A]-l [B] = [P] [Dl] [P]-l and

[A]-l[C] = [P][DZ] [P]-’, where [DI] and [Dz] are

diagonal matrices containing the eigenvalues of [A]’1 [B] and

[A]’1 [C]. Subsequently, (10) can be expressed as

[ l[Yfl=wl

2[D,] -[D,] z’

[I] O
(11)

where x’ = [P]-lX and y’ = r,zz’, Equation (11) is then

reduced to 2 x 2 matrices for each pair of eigenvalues )1

and A2

R’-:21H=’H
(12)

The eigenvalues & can then be easily derived from the

characteristic equation and have solutions ~ = Al +

w- StabilitY requires that K ~ 1, which is true if
IA21<1, and IAII <(1+ ~2)/2, or, if p([A]-l[C]) <l, and

P([A]-l[B]) < (1 + A2)i2.

The spectral radius of [A]’1 [C] can be determined in closed

form if it is assumed that Q is a homogeneous space. (Note

that this is not a requirement -for stability.) This results in

[Ta] = o/e. [Te]. Comparing (6) and (7), [A] and [C] are then

expanded in terms of [T.] and [S], and [C]a – AZ [A]r = O

can be rewritten as

[S]iz = +r,]z (13)

where

~ = (A2 – 1)+ (A2 + l)ql)c@ta/2&r

/3(c,At)’(1 - A,) “
(14)
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Fig. 1. Numerically derived resonant frequency versus time step

(P = 0.~5, h = .125 m). The exact resonant frequency is 180.15
MHz.

It can be shown that [S] is a nonnegative matrix and [T:] is

a positive definite matrix, and thus K > 0. Also, Kmax =

%&/~&n, Where ~~ax rincl ~~ln are the maximum and
minimum eigenvalues of [S] and [T=], respectively [5]. Then,

from (14)

1 + @(coAt)2 – &OAt:

AZ = r (15)

1 + @(coAt)2 + &ocoAt:

and IA21<1 for all /3.

Similarly, the spectral radius of [A]- 1[B] is determined

from the eigenvalue equation [B]% – Al [A]x = O, leading to

where K are the eigenvalues of (13). Finally, stability requires

IAII < (l+ A,)/2, which is true for all M z O if j3 > 1/4. Since

~max is finite, then stability can be defined in the weak sense.
Thus, choosing

leads to unconditional stability of the second-order update

expression (6).

IV. NUMERICAL lQSULTS

,A FORTRAN program based on the FETD method pre-

sented herein has been implemented on an HP-720 worksta-

tion. A matrix solution is performed at each time step using the

Conjugate Gradient method with diagonal preconditioning. To

validate the accuracy and stability of this method, the simple

example of the excitation of a lossless cavity (a = O) with

perfectly conducting walls is studied. The dimensions of the

cavity are 1.0 m by 0.5 m by 1.5 m, and the cavity is modeled

using tetrahedral elements.

Fig. 1 illustrates a plot of the resonant frequency of the

cavity for the TE~ol mode versus the discrete time step
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2. Computational work required versus time step (~ = 0.25, h = .125

At for ~ = 1/4. The resonant frequency was obtained by

Fourier transforming the time response. The simulations were

performed over the time period t = 0–500 ns, and the mesh

had an average tetrahedral radius of h = 0.125 m. As expected,

the error in the computed resonant frequency decreases as

the time step is decreased. Note that the algorithm is stable

for all time steps. Comparatively, for this mesh a central

difference approximation (~ = O) has a stability criterion of

At< 0.18 ns. Fig. 2 shows the variation of computational

effort with the time step. This plot shows that number of

iterations of the conjugate gradient method required per time

step decreases as the time step becomes smaller. However,

the total computational work required actually increases as

the time step is decreased since a larger number of time steps

is required to reach steady state as illustrated in Fig. 2. An

optimal time step of roughly 0.25 ns will provide both accuracy

and lower computational time.

Fig. 3 illustrates the variation of the resonant frequency for

the TE1O1 and TE~02 modes with ,B. (The exact resonant
frequency for the TE~02 mode is 249.83 MHz.) for a time

step of 0.1 ns (this was chosen such that /3 = O was stable).

These figures indicate that the error increases with ~. Thus,

the optimal choice for @ is 1/4.

V. CONCLUSION

A finite element time-domain algorithm was presented.

Using the Newmark-Beta formulation, it was shown that an

unconditionally stable scheme is achievable, providing the

interpolation parameter ,(? > 1/4. It was further shown that

choosing 0 = 1/4 minimized solution error. Finally, it has-.
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Fig. 3. Resonant freuqency versus @ (At = 0.1 ns, h = 0.125 m).

been found, that accurate solutions are obtained for time steps

At w (A/15)/c, where c is the speed of light, and A is the

maximum wavelength of interest in the frequency response.
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