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An Unconditionally Stable Finite Element
Time-Domain Solution of the Vector Wave Equation
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Abstract—This paper presents an implicit finite element time-
domain (FETD) solution of the time-dependent vector wave equa-
tion. The time-dependent formulation employs a time-integration
method based on the Newmark-Beta method. A stability analysis
is presented demonstrating that this leads to an unconditionally
stable solution of the time-dependent vector wave equation. The
advantage of this formulation is that the time step is no longer
governed by the spatial discretization of the mesh, but rather by
the spectral content of the time-dependent signal. A numerical
example of a three-dimensional cavity resonator is presented
studying the effects of the Newmark-beta parameters on the
solution error. Optimal choices of parameters are derived based
on this example.

1. INTRODUCTION

OLUME DISCRETIZATION techniques have been used

extensively for rigorous time-domain analyses of mi-
crowave circuits and resonators. The finite-difference time-
domain (FDTD) method, an explicit method, has proven to
be a highly efficient technique [1]. Finite element methods
have also been implemented using both implicit [2}-[5], and
explicit methods [6]. For an implicit method to be competitive
with an explicit method, the number of time iterations required
to converge to a final solution must be significantly less,
since each time iteration requires a solution of a linear system
of equations. Unfortunately, the implicit finite element time-
domain (FETD) methods presented in [2]-[5] are conditionally
stable, and in fact, stability requires time steps that can be
smaller than those required by explicit FDTD methods [7].
In this letter, a FETD algorithm based on the Newmark Beta
method [8], [9] is presented. It is shown that the algorithm is
unconditionally stable for the three-dimensional vector FETD
problem. Some numerical examples based on a cavity res-
onator problem are presented to demonstrate the efficiency and
accuracy of the method and the optimal choice of parameters.

II. THE FINITE ELEMENT FORMULATION

Time-dependent electromagnetic fields radiated by an elec-
tric current density J are defined in a finite volume € bound
by the surface 9€2. The electric fields must satisfy the time-
dependent inhomogeneous wave equation
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where ¢q is the speed of light in free space, o is the con-
ductivity, and e, and p, are the relative permittivity and
permeabilities. The problem is simplified by defining 92 to be
an electric (PEC) or magnetic (PMC) wall. The inner product
of (1) with a testing function T is performed, and applying
Green's first vector identity leads to the weak form

///

E o OE
7(V><T (VXE)—’—/J/()O'T 9 5 W

ot %
///uof—dﬂ 2)

The vector fields are expanded using one-form Whitney edge
elements W’J weighted by constant coefficients e, that are
continuous functions of time. Taking the first variation of (2)
and evaluating it at the stationary point leads to the second-
order ordinary differential equation
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Based on the Newmark-Beta formulation [8], [9], (3) is
approximated as
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where, ™ is the discrete-time representation of e, namely,
e™ = e(nAt) and /3 is a constant. This leads to the implicit
update scheme
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III. STABILITY ANALYSIS
Equation (6) is expressed in reduced notation as the second-
order difference equation

et = 2[A]"V[Ble" — [A]7V[Clen %)

where it is assumed f™ = 0. This can be reduced to a
first-order equation by introducing the vectors

N en+1 " e”
y+1:[ n} y :L""l )
and then expressing (7) as
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Stability of the first-order equation requires p([M]) < 1, where
p([M]) is the spectral radius of M.

Define (A1,z1) to be an eigensolution of [A]~'[B], and
(A2, 22) to be an eigensolution to [A]~1[C]. It can be shown
that [A]~1[B] and [A]}[C] are simultaneously diagonalizable
[10]. This implies that £3 = cx;, where ¢ is a constant.
The eigenspectrum of [M] is then found from the eigenvalue

problem
nfs] =<5)

Let [P] be the eigenvector matrix of [A]7![B] and
[A]7YC]. Then, [A]7'[B] = |[P|[Di][P]™' and
[A]7Y[C] = [PI[D5][P]™Y, where [D;] and [Dj] are
diagonal matrices containing the eigenvalues of [A]~![B] and
[A]71[C]. Subsequently, (10) can be expressed as
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where 2/ = [P]7'x and ¢/ = na’. Equation (11) is then
reduced to 2 x 2 matrices for each pair of eigenvalues \;

and )\2
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The eigenvalues £ can then be easily derived from the
characteristic equation and have solutions ¢ = X; +
VA2 = Xg. Stability requires that |£| <1, which is true if
|)\2| <1, and I/\ll < (1 + )\2)/27 or, if p([A]_l[C]) <1, and
(A1 [B]) < (1 + A2) /2.

The spectral radius of [4]~1[C] can be determined in closed
form if it is assumed that Q2 is a homogeneous space. (Note
that this is not a requirement for stability.) This results in
[Ts] = o/er[T¢]. Comparing (6) and (7), [A] and [C] are then
expanded in terms of [T;] and [S], and [C]z — X2[A]z = 0
can be rewritten as

yn+1 — [M]yn_l;
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Fig. 1. Numerically derived resonant frequency versus time step
(B = 0.25,h = .125 m). The exact resonant frequency is 180.15
MHz.

It can be shown that [S] is a nonnegative matrix and [1%] is
a positive definite matrix, and thus x > 0. AlSO, Kmax =
Ao/ AL . where A5 and AL are the maximum and

minimum eigenvalues of [S] and [T], respectively [5]. Then,
from (14)
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and [Ag| <1 for all 5.
Similarly, the spectral radius of [A]7![B] is determined
from the eigenvalue equation [B]z — A;[A]z = 0, leading to
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where & are the eigenvalues of (13). Finally, stability requires
|A1] < (14 A2)/2, which is true for all > 0 if 3 > 1/4. Since
kmax i8 finite, then stability can be defined in the weak sense.
Thus, choosing

g2

leads to unconditional stability of the second-order update
expression (6).
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IV. NUMERICAL RESULTS

A FORTRAN program based on the FETD method pre-
sented herein has been implemented on an HP-720 worksta-
tion. A matrix solution is performed at each time step using the
Conjugate Gradient method with diagonal preconditioning. To
validate the accuracy and stability of this method, the simple
example of the excitation of a lossless cavity (o = 0) with
perfectly conducting walls is studied. The dimensions of the
cavity are 1.0 m by 0.5 m by 1.5 m, and the cavity is modeled
using tetrahedral elements.

Fig. 1 illustrates a plot of the resonant frequency of the
cavity for the TE],, mode versus the discrete time step
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Fig. 2. Computational work required versus time step (3 = 0.25,h = .125
m).

At for 8 = 1/4. The resonant frequency was obtained by
Fourier transforming the time response. The simulations were
performed over the time period ¢ = 0-500 ns, and the mesh
had an average tetrahedral radius of 4 = 0.125 m. As expected,
the error in the computed resonant frequency decreases as
the time step is decreased. Note that the algorithm is stable
for all time steps. Comparatively, for this mesh a central
difference approximation (8 = 0) has a stability criterion of
At < 0.18 ns. Fig. 2 shows the variation of computational
effort with the time step. This plot shows that number of
iterations of the conjugate gradient method required per time
step decreases as the time step becomes smaller., However,
the total computational work required actually increases as
the time step is decreased since a larger number of time steps
is required to reach steady state as illustrated in Fig. 2. An
optimal time step of roughly 0.25 ns will provide both accuracy
and lower computational time.

Fig. 3 illustrates the variation of the resonant frequency for
the TE],; and TEj;, modes with 3. (The exact resonant
frequency for the TE,;, mode is 249.83 MHz.) for a time
step of 0.1 ns (this was chosen such that § = 0 was stable).
These figures indicate that the error increases with 3. Thus,
the optimal choice for 8 is 1/4.

V. CONCLUSION

A finite element time-domain algorithm was presented.
Using the Newmark-Beta formulation, it was shown that an
unconditionally stable scheme is achievable, providing the
interpolation parameter 3 > 1/4. It was further shown that
choosing 4 = 1/4 minimized solution error. Finally, it has
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Fig. 3. Resonant freugency versus 8 (At = 0.1ns,h = 0.125 m).

been found, that accurate solutions are obtained for time steps
At =~ (\/15)/c, where c is the speed of light, and X is the
maximum wavelength of interest in the frequency response.
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